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ABSTRACT

Aerospace applications require precise control despite uncertain operating conditions and unantici-
pated circumstances such as battle damage. These systems must be designed to perform robustly,
despite uncertain design models and difficult to analyze nonlinear effects. They must be capable of
learning and adapting when accumulating data indicates that previous models must be abandoned
and that existing control strategies must be changed. Data-driven design methods, collectively known
as un-falsified control theory, facilitate the creation of robust control systems that learn, discover and
evolve in real time in order to rapidly switch controller gains to compensate for the effects of battle,
equipment failures, and other changing circumstances. Applications studies will be presented that
include adaptive robot arm control and missile control.

“I have devised seven separate explanations, each of which would cover the facts as far as
we know them. But which of these is correct can only be determined by fresh information
which we shall no doubt find waiting for us.”

Sherlock Holmes
Arthur Conan Doyle

1.0 INTRODUCTION

Though the robust multivariable control theory that has evolved over the past quarter century offers
a major improvement over earlier algebraic and optimal control methods, it cannot produce reliable
control designs unless reliable prior bounds on plant uncertainty are available. This applies to methods
based on the H∞ µ/Km-synthesis, and BMI/LMI/IQC theories [1]–[6]. These robust control design
methods all have an Achilles heel: They are dependent of the premise that uncertainty models are
reliable, and they offer little guidance in the event that experimental data either invalidates prior
knowledge of uncertainty bounds or, perhaps, provides evidence of previously unsuspected patterns in
the data. That is, the standard H∞ µ/Km-synthesis, and BMI/LMI/IQC robust control techniques
fail in the all too common situation in which prior knowledge is poor or unreliable.

To correct this, reliable data-driven adaptive design techniques are needed. Ideally, these techniques
should incorporate mechanisms for evaluating the design implications of each new experimental data
point, and for directly integrating that information into the mathematics of the robust control design
process to allow methodical update and re-design of control strategies so as to accurately reflect the
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implications of new or evolving experimental data. Examples of recent thrusts in this direction are indi-
rect controller tuning/adaptation methods based on control-oriented identification theory and [7]–[26]
and, more recently, related direct methods that bypass plant identification based on controller unfalsi-
fication [27]–[55]. While both control-oriented identification theory and unfalsified control theory are
concerned with the difficult problem of assimilating real-time measurement data into the otherwise
introspective process of robust control design, the unfalsified control approach is a particular interest
because it directly and precisely characterizes the control design implications of experimental data.

2.0 DATA-DRIVEN ROBUST CONTROL

Validation — or more precisely unfalsification — of hypotheses against physical data is the central
aspect of the process of scientific discovery. This validation process allows scientists to sift the elegant
tautologies of pure mathematics in order to discover mathematical descriptions of nature that are not
only for logically self-consistent, but also consistent with physically observed data. This data-driven
process of validation is also a key part engineering design. Successful engineering design techniques
inevitably arrive at a point where pure introspective theory and model-based analyses must be tested
against physical data. But, in control engineering in particular, the validation process is one that has
been much neglected by theoreticians. Here, the theory tying control designs to physical data has
for the most part focused on pre-control-design ‘system identification’. Otherwise, the mathematiza-
tion of the processes of post-design validation and re-design has remained relatively unexplored virgin
territory. In particular, a satisfactory quantitative mathematical theory for direct feedback of experi-
mental design-validation data into the control design process has been lacking, though this seems to
be changing with the recent introduction of a theory of unfalsified control [31].

2.1 Theory: Validation and Unfalsification

Unfalsified control is essentially a data-driven adaptive control theory that permits learning based on
physical data via a process of elimination, much like the candidate elimination algorithm of Mitchell
[56, 57]. The theory concerns the feedback control configuration in Figure 1. As always in control
theory, the goal is to determine a control law K for the plant P such that the closed-loop system
response, say T, satisfies given specifications. Unfalsified control theory is concerned with the case in
which the plant is either unknown or is only partially known and one wishes to fully utilize information
from measurements in selecting the control law K. In the theory of unfalsified control, learning takes
place when new information in measurement data enables one to eliminate from consideration one or
more candidate controllers.

As indicated in Fig. 2 three elements that define the unfalsified control problem are (1) plant
measurement data, (2) a class of candidate controllers, and (3) a performance specification, say Tspec,
consisting of a set of admissible 3-tuples of signals (r, y, u). More precisely, we have the following.

Definition [31] A controller K is said to be falsified by measurement information if this information
is sufficient to deduce that the performance specification (r, y, u) ∈ Tspec ∀r ∈ R would be violated if
that controller were in the feedback loop. Otherwise, the control law K is said to be unfalsified. �

To put plant models, data and controller models on an equal footing with performance specifica-
tions, these like Tspec are regarded as sets of 3-tuples of signals (r, y, u) — that is, they are regarded
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Supervisor
Adaptive Unfalsified 
Switching Control

Figure 1: An unfalsified adaptive controller has a two-tier structure, consisting of a adaptive supervisor and a conven-

tional controller K. The supervisor monitors plant data (u, y) for evidence that would falsify candidate controllers. If

the currently active controller K becomes falsified by data, then an as yet unfalsified controller is switched into the

loop to replace it.

as relations in R×Y × U . For example, if P : U → Y and K : R×Y → U then

P =
{

(r, y, u) y = Pu
}

K =
{

(r, y, u) u = K

[
r
y

] }
.

And, if J(r, y, u, t) is a given loss-function that we wish to be non-positive for all time t, then the
performance specification Tspec would be simply the set

Tspec =
{

(r, y, u) J(r, y, u, t) ≤ 0 ∀t
}

. (1)

On the other hand, experimental information from a plant corresponds to partial knowledge of the
plant P. Loosely, data may be regarded as providing a sort of an “interpolation constraint” on the
graph of P — i.e., a ‘point’ or set of ‘points’ through which the infinite-dimensional graph of dynamical
operator P must pass.

Typically, the available measurement information will depend on the current time, say τ . For
example, if we have complete data on (u, y) from time 0 up to time τ > 0, then the measurement
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information is characterized by the set [31]

Pdata
∆=

{
(r, y, u) ∈ R×U ×Y Pτ

[
(u − udata)
(y − ydata)

]
= 0

}

(2)

where Pτ is the familiar time-truncation operator of input-output stability theory (cf. [58, 59]), viz.,

[Pτx](t) ∆=
{

x(t), if 0 ≤ t ≤ τ
0, otherwise.

The main result of unfalsified control theory is the following theorem which gives necessary and
sufficient conditions for past open-loop plant data Pdata to falsify the hypothesis that controller K can
satisfy the performance specification Tspec.

Unfalsified Control Theorem [31] A control law K is unfalsified by measurement information
Pdata if, and only if, for each triple (r0, y0, u0) ∈ Pdata ∩ K, there exists at least one pair (û0, ŷ0)
such that

(r0, ŷ0, û0) ∈ Pdata ∩ K ∩ Tspec. (3)

Proof: With controller K in the loop, a command signal r0 ∈ R could have produced the measurement
information if, and only if, (r0, y0, u0) ∈ Pdata ∩ K for some (u0, y0). The controller K is unfalsified
if and only if for each such r0 there is at least one (possibly different) pair (u1, y1) which also could
have produced the measurement information with K in the loop and which additionally satisfies the
performance specification (r0, y1, u1) ∈ Tspec. That is, K is unfalsified if and only if for each such r0,
condition (3) holds. �

The Unfalsified Control Theorem constitutes a mathematically precise statement of what it
means for experimental data and a performance specification to be inconsistent with a particular
controller. It has some interesting implications:

• The Unfalsified Control Theorem is nonconservative; i.e., it gives “if and only if” conditions
on K. It uses all the information in the past data — and no more. It provides a mathemat-
ically precise “sieve” which rejects any controller which, based on experimental evidence, is
demonstrably incapable of meeting a given performance specification.

• The Unfalsified Control Theorem is “model free”. No plant model is needed to test its
conditions. There are no assumptions about the plant.

• Information Pdata which invalidates a particular controller K need not have been generated with
that controller in the feedback loop; it may be open loop data or data generated by some other
control law (which need not even be in K).

• When the sets Pdata, K and Tspec are each expressible in terms of equations and/or inequalities,
then falsification of a controller reduces to a minimax optimization problem. For some forms of
inequalities and equalities (e.g., linear or quadratic), this optimization problem may be solved
analytically, leading to procedures for direct identification of controllers — as the example in
[34].
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Figure 2: An unfalsification process is used supervisory control design. The process requires three types of input

(1) goals, (2) candidate controllers and (3) data. Controllers are sifted to find those that are consistent with both

performance goals and physical data. No plant models are required while the process is running, though a plant model

can be useful for prior selections of the candidate controllers and the performance goal.

• Given data (u0, y0) and a candidate controller K, the r0’s satisfying the conditions of the Un-
falsified Control Theorem are called the fictitious reference signals. When K has a causal
inverse, the r0 is uniquely determined by (u0, y0) and a candidate controller K; that is, there
exists a causal function r̃(K,u0, y0) such that

r0 = r̃(K,u0, y0).

The function r̃(K,u0, y0) is called the fictitious reference signal [27, 31]; and is closely related to
the virtual reference signal of [50].

• In adaptive control the fact that the supervisor chooses a controller means, at least implicitly,
that there is a real-valued data-driven cost function V (K, y0, u0, t) such that at any give time τ
the active controller is cost-minimizing

K̂(y0, u0, t) = arg min
K∈K

V (K, y0, u0, t). (4)

In the case of unfalsified control, the cost function V is determined from the cost J(r, y, u, t) and
evaluating it with r equal to the fictitious reference signal r̃(K,u0, y0):

V (K, y0, u0, t) = J(r̃(K,u0, y0), y0, u0, t). (5)

2.2 Data-Driven Learning and Adaptive Control

The unfalsified control theorem says simply that controller falsification can be tested by computing
an intersection of certain sets of signals. A noteworthy feature of the unfalsified control theory is that
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Table 1: Recursive Adaptive Control Algorithm

Input:

• A finite set K of m candidate dynamical controllers Ki(r, y, u) = 0, (i = 1, . . . , m) each having the causal-left-
invertibility property that r(t) is uniquely determined from Ki(r, y, u) = 0 by past values of u(t), y(t).

• Sampling interval ∆t and current time τ = n∆t;

• Plant data (u(t), y(t)), t ∈ [0, τ ];

• Performance specification set Tspec consisting of the set of triples (r, y, u) satisfying for all k = 1, . . . , n∫ k∆t

0

T̃spec(r(t), y(t), u(t), t) dt ≤ 0.

Initialize:

set k = 0, set î = m;

for i = 0 : m, set s(i) = 1, set J̃(i) = 0, end.

Procedure:

while î > 0;

k = k + 1;

for i = 1 : m;

if s(i) > 0;

for each t ∈ [(k − 1)∆t, k∆t];

solve Ki(r, y, u) = 0 for r(t);

(note that r(t) exists and is unique since Ki has the causal-left-
invertibility property)

end;

J̃(i) = J̃(i) +
∫ k∆t

(k−1)∆t
T̃spec(r(t), y(t), u(t), t) dt;

if J̃(i) > 0, set s(i) = 0, end;

end;

end;

î = max
{

i s(i) > 0
}
;

end.

a controller need not be in the loop to be falsified. Broad classes of controllers can be falsified with
open-loop plant data or even data acquired while other controllers were in the loop. Adaptive control
is achieved within the this framework by using the unfalsification process as the key element of a
supervisory controller (cf. [60, 61]). The supervisor switches an unfalsified controller into the feedback
loop whenever the current controller in the loop is amongst those falsified by observed plant data —
see Fig. 2. The supervisor chooses as the current control law one that is not falsified by the past data,
resulting in a control law that is adaptive in the sense that it learns in real time and changes based
on what it learns.

Like the controllers of [62, 63], this approach to adaptive real-time unfalsified control leads to a sort
of “switching control.” Controllers which are determined to be incapable of satisfactory performance
are switched out of the feedback loop and replaced by others which, based on the information in
past data, have not yet been found to be inconsistent with the performance specification. However,
adaptive unfalsified controllers generally would not be expected to exhibit the poor transient response
associated with switching methods such as [62]. The reason is that, unlike the theory in [62], unfalsified
control theory efficiently eliminates broad classes of controllers before they are ever inserted in the
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Figure 3: A data-driven unfalsified missile controller would have abilities to adaptively discover solutions in real-time

to compensate for sudden in-flight changes and damage.

feedbackunfalsified control and other adaptive methods is that in unfalsified control one evaluates
candidate controllers objectively based on experimental data alone, without prejudicial assumptions
about the plant.

While, in principle, the unfalsified control theory allows for the set K to include continuously
parameterized sets of controllers, restricting attention to candidate controller sets K with only a finite
number of elements can simplify computations. Further simplifications result by restricting attention
to candidate controllers that are “causally-left-invertible” in the sense that, given a K ∈ K, the current
value of r(t) is uniquely determined by past values of u(t), y(t). When (2) holds, these restrictions on
Tspec and K are sufficient to permit the unfalsified set to be evaluated in real-time via the following
conceptual in Table 1.

This algorithm returns for each time the least index î for which K
̂i is unfalsified by the past

plant data. Real-time unfalsified adaptive control is achieved by always taking as the currently active
controller

K̂
∆= K

̂i

provided that the data does not falsify all candidate controllers. In this latter case, the algorithm
terminates and returns î = 0.

It is important to note that while the above algorithm is geared towards the case of an integral
inequality performance criterion Tspec and a finite set of causally-left-invertible Ki’s, the underlying
theory is, in principle, applicable to arbitrary non-finite controller sets K and to hybrid systems with
both discrete and continuous time elements.

Comment If the plant is slowly time-varying, then older data ought to be discarded before evaluating
controller falsification. This may be effected within the context of our the Recursive Adaptive Control
Algorithm described in Table 1 by fixing τ = τ0 and regarding t− τ0 as the deviation from the current
time. The result is a an algorithm which only considers data from moving time-window of fixed duration
τ0 time-units prior to the current real-time. In this case the unfalsified controller set KOK no longer
shrinks monotonically as it would if τ were increasing in lockstep with real-time.
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2.3 Design Studies

Design studies have confirmed the theoretical expectation that supervisory controllers that are designed
based on the logic of unfalsification can be effective in closing the outer data-driven loop on the control
design process. Unfalsified control theory has proved effective in applications involving both off-line
controller gain tuning and in real-time adaptive control design studies. Following is a brief description
of some of the design studies that have helped us to better understand the potential of the unfalsified
control theory, as well as limitations of the current theory.

2.3.1 Missile Autopilot

One design study that we conducted involved using an unfalsified controller to robustly discover PID
controller gains for an adaptive missile autopilot ‘on the fly’ in real-time [36]. Figure 3 summarizes the
results of the missile design. In all trials, the response of the adaptive loops was swift and sure-footed
— in stark contrast to what would be expected from traditional quasi-static adaptive methods (e.g.,
standard model reference adaptive control).

2.3.2 Universal PID Controller

One application of the theory involved implementing a PID-based adaptive ‘universal’ controller im-
plemented as Matlab Simulink block based on the unfalsified theory [37] — see Fig 4. The controller
sifts through a bank of candidate controllers in real-time, identifying which of the 30 controllers is
unfalsified with respect to an inequality performance goal of ‘mixed-sensitivity’ type, viz.,

J(r, y, u, t) ≤ 1 for all t

where

J(r, y, u, t) = max
τ≤t

‖w1 ∗ (r − y)‖2
τ + ‖w2 ∗ u‖2

τ − σ2τ

‖r‖2
τ + ρ

(6)

and w1 and w2 are ‘weighting’ filters and ρ and sigma are constants chosen by the designer based
on control bandwidth and robustness considerations – exactly as in standard mixed-sensitivity robust
control design. Initially, there are 30 candidate PID gain combinations, indicated on the vertical axis.
Unfalsified controllers are indicated by the horizontal traces. When the currently active controller
indicated by the bold trace becomes falsified, then one of the as yet unfalsified controllers is switched
into the loop to replace it. Notice that adaptive supervisor loop is so fast that the controller is
able to stabilize the open-loop unstable plant without prior plant knowledge and without appreciable
transients. The unfalsification procedure always discovers a stabilizing controller, The supervisory
controller designed via unfalsified control quickly discovers a stabilizing candidate controller for the
open-loop-unstable plant. The unfalsified control theory assures the procedure will always converge
to a stabilizing controller that meets the performance goals, provided only that the initial candidate
controller set contains at least one such controller; no other prior knowledge of the plant is necessary to
assure convergence. In particular, the unfalsification logic in the supervisor is guaranteed to stabilize
and meet performance goals without any of the ’standard assumptions’ on the plant (e.g., [64, 65]) —
viz., without minimum phase, linearity, bounds on relative-degree, knowledge of the sign of the plant
high frequency gain, or persistence of excitation.

2.3.3 Robot Manipulator Arm

We used to unfalsified methodology to adaptively tune the parameters of a nonlinear ‘computed-torque’
controller for a robot manipulator arm [66, 32] — see Fig 5. The arm proved to be capable of a quick
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Figure 4: Here we see a Matlab Simulink time-history for an adaptive ‘universal PID controller’.

and reliable control response despite large and sudden variations in load mass. Again, the controller
performed with precision, despite noise, dynamical actuator uncertainties and without prior knowledge
of the plant model or its parameters. Results for the robot design were surefooted and precise, with
the controller maintaining an order of magnitude more precise control than a similar model-reference
adaptive controller during widely fluctuating manipulator load variations; the controller was also more
robust in that it was capable of maintaining precise control even during load variations that destabilized
a similarly structured model-reference adaptive controller.

2.3.4 Industrial Process Control

Although very few researchers other than ourselves have as yet examined unfalsified control meth-
ods, those who have taken this step have predictably confirmed the effectiveness of unfalsified control
methods in several industrial process control applications. For example, Kosut [38] examined unfalsi-
fied controller for direct data-driven off-line control gain tuning under the assumption of a noise-free
linear-time-invariant plant. Woodley, How and Kosut [67] and used the theory with good result for
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Figure 5: Unfalsified control produced superior results for a nonlinear two-link robot manipulator subject to uncertain

dynamics, noisy disturbances and abrupt changes in load mass. The two sluggishly smooth traces large amplitude

signals in the plot are with a conventional adaptive controller used to adjust control gain-vector θ(t), and the two very

low amplitude traces are for the unfalsified controller. The unfalsified controller had a much quicker, sure-footed and

precise response without increased control effort.

data-driven discovery of good control gains for a laboratory control problem involving two spring-
connected masses. Also, Collins and Fan [39] successfully used the unfalsified control methodology in
a run-to-run setting to tune gains off-line in an industrial weigh-belt feeder control design study. More
recently, there have been some promising adaptive control applications to machine control by Razavi
and Kurfess [40, 68] based on the unfalsified control methodology.

3.0 STABILITY AND CONVERGENCE

When modeling assumptions about the plant fail to hold, there is the possibility that badly designed
adaptive algorithms can fail to stabilize — even when the adaptive control problem is theoretically
feasible in the sense that one of the candidate controllers K ∈ K is stabilizing. The problem is that in
most cases, ‘proofs’ of stability in adaptive control only hold when there is no mismatch between model
assumptions and the true plant. Well-know standard assumptions in adaptive control include upper-
bounds on plant order, assumption the plant is minimum phase and has no time-delays, or that the
plant is ‘sufficiently close’ to one of several presumed prior plant models. There are a number of studies
illustrating how adaptive systems can fail in the presence of a mismatch between assumptions and
reality [69, 70]. A typical result of model mismatch instability is shown in Figure 6which illustrates the
consequences of model mismatch instability for a typical multi-model adaptive (MMAC) system. But,
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It crashes.

Why?

C1 or C2
?

Figure 6: Without cost-detectability, model mismatch can cause an adaptive controller to switch a destabilizing

controller C2 into the loop and keep it, even when the original stabilizing controller C1 was working well [70].

though currently popular adaptive algorithms are susceptible to model-mismatch instability, optimal
unfalsified adaptive design designs with a suitable cost-detectability properties as well as some lesser
known early adaptive methods robustly avoid model mismatch instability, provided that the unfalsified
cost function J(r, y, u, t) is chosen to have a property called cost detectability [72, 73].

For example, the multi-controller adaptive control (MCAC) switching algorithms and Martens-
son [71] and of Fu and Barmish [62] are robust against model-mismatch. They require essentially
only feasibility to assure convergence. The work robustly in the presence of model mismatch because
the assign a cost penalty to destabilizing controllers that tends to infinity for destabilizing candidate
controllers. This is the essential feature of cost-detectability. Cost-detectability is a feature not typi-
cally present for most currently popular adaptive algorithms, and it explains why they are susceptible
to model mismatch instability. Without the cost detectability property, adaptive control algorithms
are in general not able to reliably distinguish stable and unstable behavior when model-mismatch ex-
ceeds certain thresholds. While, unfortunately, the early cost-detectable algorithms of [71, 62] are too
slow for applications requiring real-time adaptive stabilization, this is not true of unfalsified adaptive
control.

Definition 3.1 (Cost Detectablility) A cost function V (K,u, y, t) is said to have the cost de-
tectability property if it has all the following attributes:

1. V (K,u, y, t) is a monotone increasing function of time t for all K,u, y,

2. When K is not stabilizing and the data u, y are not stable, then ∞ = limt→∞ V (K,u, y, t).

3. When K is stabilizing, limt→∞ V (K,u, y, t) is uniformly bounded for all (u, y, t), (even if the
data u, y are unstable signals).

So-called ‘L2e-gain related’ cost functions like the ‘mixed-sensitivity’ cost (6) generically assure the
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cost detectability property for unfalsified cost function [72, 73]

V (K, y, u, t) = J(r̃(K,u, y), y, u, t).

The plant does not need to be minimum phase, nor does it need to satisfy any other standard as-
sumptions. So, with L2e-gain related cost functions, destabilizing controllers are never retained when a
stabilizing candidate controller is available, irrespective of model mismatch and irrespective of whether
standard assumptions or other prior beliefs about the plant fail to hold. Model-mismatch instabil-
ity cannot occur. The adaptive system is stable whenever the adaptive control problem is feasible.
[72, 73]. Moreover unlike the early cost-detectable adaptive algorithms of Martensson [71] and of
Fu and Barmish [62], unfalsified adaptive control systems adapt with optimally rapidity. Simulation
studies [37] demonstrate that unfalsified adaptive systems can adapt fast enough to do real-time sta-
bilization of open-loop unstable plants in cases where the measurement signal to noise ratio is not too
great.

Using the hysteresis switching lemma [74], Stefanovic et al. proved the following.

Convergence and Stability [72] A switched sequence of controllers K(ti) (i = 1,2,. . . ) that mini-
mize the current unfalsified cost V (K,u, y, t) at each switch-time ti will stabilize the plant P if the cost
V (K,u, y, t) cost detectability property. Proof: As illustrated in Figure 7, cost detectability assures
that the cost-minimizing controller tends towards one with finite cost, which implies stability when the
cost has the cost-detectability property. See [72] for more a detailed proof. �

While Morse et al. were able to demonstrate the cost-detectability property (which they called
‘tunability’) for the adaptive methods that they examined only by introducing assumptions on the
plant, the results of [72, 73] demonstrated one can directly design an unfalsified cost V (K,u0, y0, t) to
be cost detectable without regard to plant assumptions. Cost-detectably unfalsified adaptive control
selectors quickly, reliably and robustly sift candidate controllers without assumptions on the plant
itself.

In designs like [37], we have demonstrated that the unfalsified control approach with an L2e-gain
related cost function converges quickly and reliably in real time to a stabilizing controller that robustly
achieves specified performance goals, often converging within a fraction of an unstable plant’s fastest
unstable time constant. This speed of adaptive response means that “bursting phenomena” that
plague conventional slow adaptive systems do not occur, even in the absence of persistently exciting
disturbance signals. Because our unfalsified adaptive systems perform reliably irrespective of plant
model mismatch, they have the potential to reliably achieve rapid real-time failure recovery for battle-
damaged aircraft and similar systems.

4.0 DISCUSSION

In the unfalsified control approach to supervisory control, decisions to adapt are data-driven. Deter-
mination of which candidate control laws are suitable are made based on experimental evidence, i.e.,
the actual values of sensor output signals and actuator input signals. In this process the role, if any, of
plant models and of probabilistic hypotheses about stochastic noise and random initial conditions is
entirely an a priori role: These provide concepts which are useful in selecting the class K of candidate
controllers and in selecting achievable goals (i.e., selecting Tspec). The methods of traditional model-
based control theories (root locus, stochastic optimal control, Bode-Nyquist theory, H∞ robust control
and so forth) provide mechanizations of this prior selection and narrowing process. Unfalsified control
takes over where traditional model-based methods leave off, providing a mathematical framework for
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Figure 7: L2e-gain related cost functions have the cost-detectability property: They are monotone in t, uniformly

bounded for stabilizing K and unbounded for destabilizing K. Cost-minimizing adaptive laws robustly converge irre-

spective of the size of plant model-mismatch [72, 73].

determining the proper consequences of experimental observations on the choice of control law. In
effect, the theory gives one a model-free mathematical “sieve” for candidate controllers, enabling us
(i) to precisely identify what of relevance to attaining the specification Tspec can be discovered from
experimental data alone and (ii) to clearly distinguish the implications of experimental data from
those of assumptions and other prior information.

The Unfalsified Control Theorem explains the learning mechanisms of adaptive control theory.
It provides an exact characterization of what can, and what cannot, be learned from experimental
data about the ability of a given class of controllers to meet a given performance specification. A
salient feature of the theory is that the data used to falsify a class of control laws may be either
open-loop data or data obtained with other controllers in the feedback loop. Consequently, large
classes of candidate controllers are falsified by even a few experimental samples of plant input output
data. Candidate controllers need not be actually inserted in the feedback loop to be falsified. This is
important because it means that adaptive unfalsified controllers will be significantly less susceptible
to poor transient response than adaptive learning algorithms which require inserting controllers in the
loop one-at-a-time to determine if they are unsuitable.

A noteworthy feature of the unfalsified control theory is its flexibility and simplicity of implemen-
tation. Controller falsification typically involves only real-time integration of algebraic functions of the
observed data, with one set of integrators for each candidate controller. The theory may be readily
applied to nonlinear time-varying plants, as well as to linear time-invariant ones.

5.0 CONCLUSION

As robust control theory has matured, a key challenge has been the need for a more flexible theory
that provides a unified basis for representing and exploiting evolving real-time data. The role of
unfalsified control is to close the loop on the adaptive and robust control design processes by developing
precise data-driven methods to implement supervisory control schemes that can optimally exploit the
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information in data to enhance robustness and improve performance. The types of control designs
will be better able to compensate for uncertain and time-varying effects, battle damage, equipment
failures and other changing circumstances.

A salient feature of unfalsified adaptive control systems is that they are robustly convergent ir-
respective of model mismatch, provided that the problem is feasible and one uses a cost function
J(r, y, u, t) with the cost-detectability property. No plant assumptions are required to assure conver-
gence. Safe adaptive control is assured whenever the adaptive control problem is feasible. Adaptation
is rapid and reliable because unfalsified control makes optimal use of information in measurements
data to eliminate destabilizing controllers efficiently and quickly, selecting only controllers that are
optimal with respect to data.

“It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts
to suit theories instead of theories to suit facts.”

Sherlock Holmes
Arthur Conan Doyle
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